電工機械 0430b

一、單選題 (81題 每題1分 共81分)

() 1. 全節距繞的同步發電機,其節距因數為 (A)1 (B)0 (C)-1 (D)不一定。

解答A

() 2. 一電機每極有 18 槽,其第一個電樞繞組的線圈邊各在 1 號與 16 號槽中,其基本諧波之節距因數為 (A)cos60° (B)sin60° (C)sin75° ° (D)cos75°。

解答C

解析 線圈跨距=
$$16-1=15$$
 槽,線圈節距= $\frac{15}{18}$

節距因數
$$K_p = \sin \frac{\beta}{2} = \sin \frac{15}{18} \times 180^\circ$$

() 3. 全節距繞的電樞繞組,其線圈的兩個線圈邊相隔 (A)0° (B)90° (C)180° (D)360° 電機角。

解答C

() 4. 在同步發電機中,電樞繞組的節距電機角為 120°,可以消除幾次諧波電壓對電路之影響? (A)— (B)二 (C)三 (D)五 次。

解答 (

解析 各n次諧波之節距因數
$$K_{pn} = \sin \frac{n\beta}{2}$$

若β=120°, n=3 時,
$$K_{p3}$$
=sin $\frac{3\times120^{\circ}}{2}$ =0,電路中影響最大的就是三次諧波。

() 5. 一臺三相、6 極交流同步發電機,電樞共 90 槽,若第一個電樞繞組的線圈邊各在 1 號與 13 號槽中,則線圈節距因數為 (A)sin72° (B)sin60° (C)sin45° (D)sin30°。

解答A

解析 極距=
$$\frac{90}{6}$$
=15 槽 ,線圈節距=13-1=12 槽 , β = $\frac{12}{15}$ ×180°=144°

線圈節距因數
$$=\sin\frac{\beta}{2}=\sin72^{\circ}$$

() 6. 一臺三相、8 極同步發電機,電樞有 72 槽,電樞繞組採用雙層疊繞,則繞組之分布因數為 $(A)6\sin 10^{\circ}$ $(B)\frac{1}{6\sin 10^{\circ}}$ $(C)\frac{3}{2\sin 10^{\circ}}$

$$(D)\frac{2\sin 10^{\circ}}{3} \circ$$

解答]

解析 每極每相的槽數
$$m = \frac{S}{qP} = \frac{72}{3 \times 8} = 3$$
 槽

相鄰兩槽的電機角
$$\alpha = \frac{P \times 180^{\circ}}{S} = \frac{8 \times 180^{\circ}}{72} = 20^{\circ}$$

$$K_d = \frac{1}{2m\sin\frac{\alpha}{2}} = \frac{1}{2\times3\times\sin\frac{20^{\circ}}{2}} = \frac{1}{6\sin 10^{\circ}}$$

() 7. 假設某交流同步發電機之電樞鐵心上有 48 槽,每槽有兩個線圈邊,如欲將之設計為三相、4 極之電樞繞組,則其相鄰兩線槽間之相 角差應為若干電機角度? (A)15° (B)12° (C)30° (D)60°。

解答

解析 相鄰兩槽的電機角
$$\alpha = \frac{P \times 180^{\circ}}{S} = \frac{4 \times 180^{\circ}}{48} = 15^{\circ}$$

() 8. 已知一臺同步發電機的分布因數為 0.962, 節距因數為 0.966, 則其繞組因數為 (A)0.929 (B)0.996 (C)1.928 (D)0.004。

電工機械 0430b

解答

解析 $K_w = K_d \times K_p = 0.962 \times 0.966 = 0.929$

() 9. 有一Y接的三相同步發電機,f=60Hz,每極最大磁通量 φ m=0.1 韋伯,每相匝數N=500 匝,繞組因數=0.9,試求其無載時之線電 壓為若干伏特? (A)13320 (B)11988 (C)18706 (D)20764。

解答

DT D

解析 相電壓 $V_{\phi} = E_{\phi} = 4.44K_{w}Nf\phi_{m} = 4.44 \times 0.9 \times 500 \times 60 \times 0.1 = 11988V$

線電壓 $V_1 = \sqrt{3} V_{\phi}$ (∵Y接) = $\sqrt{3} \times 11988 = 20764V$

()10. 有一同步發電機為 8 極、72 槽、雙層繞組,若線圈節距為 $\frac{5}{6}$,則繞組因數為 (A)0.93 (B)0.97 (C)0.87 (D)0.91。

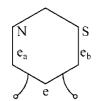
解答

[解析] $K_p = \sin \frac{\beta}{2} = \sin \frac{\frac{5}{6} \times 180^{\circ}}{2} = 0.966$

$$m = \frac{72}{3 \times 8} = 3 \cdot \alpha = \frac{8 \times 180^{\circ}}{72} = 20^{\circ} \cdot K_{d} = \frac{1}{2m \sin \frac{\alpha}{2}} = \frac{1}{2 \times 3 \times \sin \frac{20^{\circ}}{2}} = 0.96$$

 $K_w = K_p \times K_d = 0.966 \times 0.96 = 0.93$

()11. 發電機之電樞繞組每一線圈之兩線圈邊放置位置,與其應電勢大小,下列敘述何者正確? (A)兩線圈邊置於同一磁極下,應電勢為兩邊應電勢相乘 (B)兩線圈邊置於同一磁極下,應電勢為兩邊應電勢相加 (C)兩線圈邊置於相鄰不同磁極下,應電勢為兩邊應電勢相乘 (D)兩線圈邊置於相鄰不同磁極下,應電勢為兩邊應電勢相加。


解答

D

解析 如圖所示

(1)線圈應電勢 $\vec{e} = \vec{e}_a + \vec{e}_b$,為兩邊應電勢相加。

(2)兩線圈邊置於不同磁極下。

()12. 繞組因數 K_w ,節距因數 K_p ,分布因數 K_d 三者的關係是 (A) $K_w = K_p + K_d$ (B) $K_w + K_p + K_d = 0$ (C) $K_w = K_d K_p$ (D) $K_w = \frac{K_d}{K_a}$ 。

解答 (

()13. 目前臺灣電力公司在臺灣地區的電力系統,其電源電壓頻率為多少? (A)50 (B)60 (C)100 (D)400 Hz。

| 解答 | **|**

()14. 一臺 12 極同步發電機,若感應電勢的頻率為 60Hz,則同步轉速為多少 rpm ? (A)5 (B)20 (C)600 (D)720。

解答(

()15. 一臺三相、4 極同步發電機, 若感應電勢的頻率為 50Hz, 則原動機轉速為多少 rpm? (A)12.5 (B)200 (C)1500 (D)1800。

解答C

[解析] $n_S = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500 \text{rpm}$

()16. 有一20極的交流同步發電機,欲產生60Hz的交流電,轉速應為 (A)100 (B)120 (C)180 (D)360 rpm。

解答 D

ch18 同步發電機原理 電工機械 0430b

()17.6極電機,其一週之電工角度為 (A)180° (B)360° (C)720° (D)1080°。

解答 D

解析 電工角
$$\theta_{\rm e} = \frac{{
m P}}{2} \, \theta_{\rm m} \, ($$
機械角 $) = \frac{6}{2} \times 360 \, ^{\circ} = 1080 \, ^{\circ}$

()18. P 極的同步電機,其電機角度等於其機械角度的幾倍? (A)P (B)2P (C) $\frac{P}{4}$ (D) $\frac{P}{2}$ 。

解答 D

()19. 一同步機之電樞繞組若採用 $\frac{5}{6}$ 節距,表示每線圈之跨距為多少度電機角? (A)30° (B)60° (C)120° (D)150°。

解答 D

解析
$$\frac{5}{6} \times 180^{\circ} = 150^{\circ}$$

()20. 三相、4 極同步發電機,其電樞繞組節距為 $\frac{7}{9}$,表示其線圈的兩個邊相隔 (A)180 (B)150 (C)140 (D)100 電工角。

解答C

解析
$$\frac{7}{9} \times 180^{\circ} = 140$$
 電工角

()21. 一同步發電機線圈節距為 $\frac{4}{5}$,每根導體之感應電勢為 1V,則每匝之感應電勢為 (A)2 (B)1.902 (C)1.862 (D)1.732 1V。

解答B

解析
$$K_p = \sin \frac{\beta}{2} = \sin \frac{\frac{4}{5} \times 180^{\circ}}{2} = 0.951$$

每匝(2根導體)之應電勢為1×2×0.951=1.902

()22. 一臺三相、4 極、48 槽之同步發電機, 其每相每極之槽數為 (A)2 (B)3 (C)4 (D)6 槽。

解答

()23. 一臺三相、16 極同步發電機,電樞鐵心共有80 槽,則相鄰兩線槽之電機相位角差多少度? (A)12° (B)5° (C)36° (D)90°。

解答(

解析
$$\alpha = \frac{P \times 180^{\circ}}{S} = \frac{16 \times 180^{\circ}}{80} = 36^{\circ}$$

()24. 一臺三相、4 極同步發電機,電樞有 48 槽,電樞繞組採用雙層疊繞,則繞組的分布因數 K_d 為 (A) K_d <0 (B) K_d =0 (C)0< K_d <1 (D) K_d =1。

解答C

解析 (1)此發電機每相每極所占槽數為 $\mathbf{m} = \frac{\mathbf{S}}{\mathsf{qP}} = \frac{48}{3 \times 4} = 4$ 槽,不是 1 槽,所以屬分布繞不是集中繞,分布繞的分布因數 \mathbf{K}_{d} 小於 1。

$$(2)\alpha = \frac{P \times 180^{\circ}}{S} = \frac{4 \times 180^{\circ}}{48} = 15^{\circ} , \text{ 分布因數} K_{d} = \frac{1}{2m\sin\frac{\alpha}{2}} = \frac{1}{2 \times 4 \times \sin\frac{15^{\circ}}{2}} = \frac{1}{8\sin7.5^{\circ}} < 1$$

()25. 一臺多相同步發電機,若各相電壓相角差為 120°,可知其為幾相電機? (A)單相 (B)二相 (C)三相 (D)六相。

解答 C

電工機械 0430b

 $frac{360^{\circ}}{120^{\circ}} = 3$,是為三相電機。

()26. 三相交流同步發電機,若磁場旋轉,而電樞在定子是靜止不動的狀態,則其電樞磁通將 (A)為定值而靜定不動 (B)為非定值而靜 定不動 (C)為非定值而與磁場作非同步速率旋轉 (D)為定值而與磁場作同步速率旋轉。

解答D

()27. 已知同步發電機之分布因數為 0.95, 節距因數為 0.97, 則其繞組因數為 (A)0.95 (B)0.97 (C)1.92 (D)0.9215。

解答 I

()28. 六相同步發電機,各相電源相角差為 (A)60° (B)90° (C)120° (D)180°。

解答A

解析 各相電源相角差= $\frac{360^{\circ}}{6}$ = 60°

()29. 同步發電機採用分布繞組 (A)鐵心可得較佳利用 (B)可以減少自感電抗 (C)可以提高銅線之電流密度 (D)以上皆是。

解答 D

()30. 多數發電廠的發電機為 (A)分激式直流機 (B)複激式直流機 (C)同步機 (D) 感應機。

解答(C

解析 絕大多數發電廠的發電機為交流發電機,便是同步發電機,且都是三相同步發電機。

()31. 有一臺三相、4 極、36 槽同步發電機,其槽距為 (A)90 (B)60 (C)20 (D)10 度電機角。

解答C

()32. 有一臺三相、6 極同步發電機, 欲產生頻率為 60Hz 的應電勢, 其轉速應為 (A)3600 (B)1200 (C)1000 (D)800 rpm。

解答 F

解析 同步轉速 $n_s = \frac{120f}{P} = \frac{120 \times 60}{6} = 1200 \text{rpm}$

)33. 改善同步發電機電壓波形,其可能的方法在下列敘述中哪一項<u>錯誤</u>? (A)調整磁極面與電樞間之氣隙長度 (B)使用短節距線圈 (C)使用分布式繞組 (D)加裝阻尼繞組。

()34. 定部 72 槽,欲繞成三相、6 極電機時,A 相始端在第一槽,B 相之始端應在 (A)4 (B)5 (C)6 (D)9 槽。

解答 I

M $=\frac{72}{3\times 6}=4$,定子上的排列順序為 $A\Rightarrow C'\Rightarrow B\Rightarrow A'\Rightarrow C\Rightarrow B'$,所以B 相的始端在第9 槽 $(1+2\times 4=9)$ 。

()35. 某 60Hz 的同步發電機,於正常運用期間,其原動機之制速器突然失靈,致使轉速上升 5%,則此時發電機之發電頻率應為 (A)57 (B)60 (C)63 (D)30 Hz。

解答|(

| 解析| 由 $f = \frac{Pn_s}{120}$ 知,頻率f與同步轉速 n_s 成正比,所以 $f = 60 \times 1.05 = 63$ Hz。

()36. 某三相、12 極同步發電機,每相每極有 4 槽,每槽放置 4 根導體,則該電機每相串聯之線圈匝數應為 (A)24 (B)48 (C)96 (D)192 匝。

解答

解析 每相串聯之導體數=4根/槽×4槽/極×12極=192根

每相串聯之線圈匝數= $\frac{192}{2}$ =96 匝

()37. 有一三相 Y 接的同步發電機,其電樞導體數共有 420 根,每極之總磁通為 0.018 韋伯,頻率為 60Hz,則該電機每相之感應電勢為

電工機械 0430b

(A)168 (B)234 (C)336 (D)414 $V \circ$

解析
$$E_{\phi} = 4.44 \text{Nf} \phi_{\text{m}} = 4.44 \times \frac{420}{2 \times 3} \times 60 \times 0.018 = 336 \text{V}$$

)38. 有一三相 Y 接的同步發電機,其電樞導體數共有 420 根,每極之總磁通為 0.018 韋伯,頻率為 60Hz,該電機之線電壓為 (A)581 (B)765 (C)414 (D)168 V °

解析 每相應電勢
$$E_{\phi} = 4.44 \text{Nf} \phi_{m} = 4.44 \times \frac{420}{2 \times 3} \times 60 \times 0.018 = 336 \text{V}$$

線電壓
$$V_1 = \sqrt{3} E_{\phi} = 581V$$

)39. 某三相、4 極、36 槽之交流電機,其線圈節距為 $\frac{8}{9}$,且採用分布繞組,試問下列何者正確? (A)分布因數 $\mathbf{K}_{\mathrm{d}} = \frac{\sin 30^{\circ}}{3\sin 10^{\circ}}$ 因數 K_p = $\cos 20$ ° (C)節距因數 K_p = $\sin 40$ ° (D)分布因數 K_d = $\frac{3\sin 10$ ° $\sin 30$ °

阿押
$$m = \frac{36 \text{ M}}{3 \text{ M} \times 4 \text{ M}} = 3 \text{ M}, \alpha = \frac{4 \times 180^{\circ}}{36} = 20^{\circ}$$

$$K_{d} = \frac{\sin\frac{m\alpha}{2}}{m\sin\frac{\alpha}{2}} = \frac{\sin\frac{3\times20^{\circ}}{2}}{3\sin\frac{20^{\circ}}{2}} = \frac{\sin30^{\circ}}{3\sin10^{\circ}}$$

$$K_p = \sin \frac{\beta}{2} = \sin \frac{\frac{8}{9} \times 180^{\circ}}{2} = \sin 80^{\circ} = \cos 10^{\circ}$$

)40. 某三相、4 極交流同步發電機,電樞上有 120 槽,則其分布因數應為 $(A)\frac{\sin 30^{\circ}}{10\sin 6^{\circ}}$ $(B)\frac{\sin 60^{\circ}}{10\sin 3^{\circ}}$ $(C)\frac{1}{20\sin 3^{\circ}}$ $(D)\frac{1}{10\sin 3^{\circ}}$

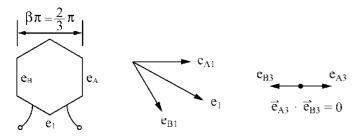
解析
$$m = \frac{S}{qP} = \frac{120}{3 \times 4} = 10$$
 槽 / 極 / 相 , $\alpha = \frac{P \times 180^{\circ}}{S} = \frac{4 \times 180^{\circ}}{120} = 6^{\circ}$

$$K_d = \frac{1}{2m\sin\frac{\alpha}{2}} = \frac{1}{20\sin 3^\circ}$$

)41. 某同步發電機為三相、12 極,電樞上有 180 槽,則其分布因數為 $(A)\frac{\sin 30^{\circ}}{5\sin 6^{\circ}}$ $(B)\frac{\sin 60^{\circ}}{5\sin 6^{\circ}}$ $(C)\frac{1}{10\sin 12^{\circ}}$ $(D)\frac{1}{5\sin 6^{\circ}}$

阿姆斯
$$m = \frac{180}{3 \times 12} = 5$$
, $\alpha = \frac{180^{\circ}}{15} = 12^{\circ}$

$$K_{d} = \frac{\sin\frac{m\alpha}{2}}{m\sin\frac{\alpha}{2}} = \frac{\sin\frac{5 \times 12^{\circ}}{2}}{5 \times \sin\frac{12^{\circ}}{2}} = \frac{\sin 30^{\circ}}{5\sin 6^{\circ}} = \frac{1}{10\sin 6^{\circ}}$$


)42. 為使氣隙磁通分布接近正弦波,同步機應採用 (A)集中繞 (B)短節距繞 (C)全節距繞 (D)鏈形繞

(1) 採用短節距繞,同一線圈的兩線圈邊所感應的電勢將有相位差,兩者的向量和要比全節距繞者略小。分析感應電勢中的基本波 成分,所受的影響較小(基本波的節距因數仍接近於1),而高次諧波成分所受的影響較大(高次諧波的節距因數小很多),衰減較

電工機械 0430b

大,因此線圈的感應電勢更接近基本波形(正弦波)。

(2) 如圖所示,兩個線圈邊的距離為 120°(即跨距=120°)電工角,兩邊的應電勢e_A和e_B波形如圖所示。如此,線圈應電勢中的三次諧波可被消滅。

()43. 若一交流發電機所產生的電動勢為 120sin60πtV,則其頻率為 (A)60 (B)30 (C)120 (D)60π Hz。

解答

解析 2πft=60πt ∴f=30Hz

()44. 若增加發電機的極數,且轉速維持不變,則其所產生電壓之頻率 (A)降低 (B)降為原來之一半 (C)增高 (D)維持不變。

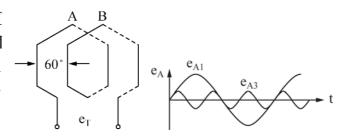
解答(

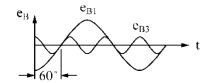
 $f = \frac{Pn_s}{120}$,極數 P 增加,頻率 f 也增高。

()45. 假設某交流電機之定子有 12 槽,每槽有兩線圈邊,如將定子設計為三相、4 極繞組,則相鄰兩槽間之相角差應為若干電機角? (A)12 ° (B)15° (C)30° (D)60°。

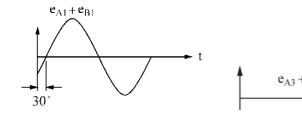
解答D

解析 每極槽數= $\frac{12}{4}$ =3 槽, $\alpha = \frac{180^{\circ}}{3}$ =60°


()46. 欲改善同步發電機的電壓輸出波形,電樞繞組應採用 (A)集中繞組 (B)分布繞組 (C)全節距繞組 (D)單層繞組。


解答

答 I


解析

分布繞會使各相感應電勢略微減小,而對諧波減小更多,結果使電壓輸出波形更像正弦波。以同相的兩個線圈 A、B為例,若兩者分布相差 60°電工角,其三次諧波(影響輸出波形最嚴重的諧波)將被完全消滅。

(a)A 線圈的基本波和三次諧波 (b)B 線圈的基本波和三次諧波

(c)A 線圈和 B 線圈基本波之和 (d)A 線圈和 B 線圈三次諧波之和(等於 0)

()47. 短節距繞的三相同步發電機,其節距因數為 (A)1 (B)0 (C)-1 (D)以上皆非。

解答 T

D

解析 短節距繞之節距因數Kp<1。

()48. 頻率為 25Hz 的同步發電機,若有 8 極,則該機每分鐘之轉速應為 (A)900 (B)750 (C)375 (D)1200 rpm。

電工機械 0430b

解析
$$n_S = \frac{120f}{P} = \frac{120 \times 25}{8} = 375 \text{ rpm}$$

()49. 交流電機為了改善電壓波形及節省線圈導線,經常採用□ (A)短節距線圈 (B)中節距線圈 (C)長節距線圈 (D)任意節距線圈。

解答 A

()50. 分布繞組之主要優點為□ (A)改善波形、散熱好、效率高 (B)增高電壓、散熱好、省材料 (C)改變波形、增加容量、絕緣容易 (D) 改變波形、散熱好、增高電壓。

解答A

()51. 下列敘述何者<u>錯誤</u>?□ (A)同步發電機之轉子速率與旋轉磁場同步 (B) 咸應機轉子速率一定遠高於定子的旋轉磁場速率 (C)同步機的轉差率 S 約等於 0 (D)一般而言,旋轉磁場型同步發電機電樞為靜止。

解答B

()52. 如何提升三相同步發電機之輸出頻率?□ (A)調升原動機之轉速 (B)調降原動機之轉速 (C)調升發電機之激磁電流 (D)調降發電機之激磁電流。

解答A

$$\boxed{\text{解析}} \quad \mathbf{n} = \frac{120\mathbf{f}}{\mathbf{P}} , \text{轉速 } \mathbf{n} \uparrow \Rightarrow \text{頻率 } \mathbf{f} \uparrow$$

()53. 一 4 極發電機,若其電樞以 1200rpm 速率旋轉,則此發電機所發出的電壓頻率為 (A)40 (B)60 (C)30 (D)10 Hz。

解答A

解析
$$f = \frac{P \cdot n_s}{120} = \frac{4 \times 1200}{120} = 40 \text{ Hz}$$

()54. 三相、4 極同步發電機,繞組節距為 $\frac{5}{6}$,即線圈的兩邊相距 150 電機角,則節距因數為 (A)0.966 (B)0.866 (C)0.707 (D)0.5。

解答A

解析
$$K_p = \sin \frac{\beta}{2} = \sin \frac{150^{\circ}}{2} = 0.966$$

()55. 有一 60Hz 的交流同步發電機,有 40 極,試問其每分鐘轉速為若干?□(A)100 (B)120 (C)180 (D)200 rpm

解答C

解析
$$n = \frac{120f}{P} = \frac{120 \times 60}{40} = 180 \text{ rpm}$$

()56. 經由水輪機驅動之三相同步發電機,若轉速為 300rpm,產生電壓之頻率為 60Hz,則此同步機之極數應為 (A)4 (B)8 (C)12 (D)24 極。

解答 I

$$n_S = \frac{120f}{P} \Rightarrow 300 = \frac{120 \times 60}{P} \Rightarrow 極數P = 24$$

()57. 為改善交流發電機的輸出電壓波形應採用□ (A)全節距線圈 (B)短節距線圈 (C)集中繞組 (D)以上皆非。

解答B

()58. 一多相交流發電機,其線圈繞成 $\frac{8}{9}$ 的線圈節距,則其節距因數為 (A) $\sin 80$ ° (B) $\cos 80$ ° (C) $\sin 160$ ° (D) $\cos 160$ ° 。

解答 A

解析
$$K_p = \sin \frac{\beta}{2} = \sin \frac{\frac{8}{9} \times 180^{\circ}}{2} = \sin 80^{\circ}$$

()59. 關於短節距繞之優點,下列敘述何者<u>錯誤</u>? (A)可以改善波形 (B)可以減少高諧波 (C)可以產生較高電壓 (D)可以減少用銅量。

解答C

()60.8 極的發電機,180°電機角相當於多少度機械角? (A)180° (B)90° (C)60° (D)45°。

電工機械 0430b

解答 D

()61. 交流三相繞組中,部分節矩線圈之感應電動勢與全節矩線圈之感應電動勢之比為 (A)帶幅因數 (B)繞組因數 (C)節矩因數 (D) 分布因數。

解答C

()62. 如圖 (G) 所示之符號為 (A) 直流發電機 (B) 交流發電機 (C) 直流電動機 (D)接地電壓表。

解答B

()63. 臺灣產業動力用電之電源頻率為 (A)50 (B)60 (C)100 (D)377 Hz。

解答B

()64. 交流發電機的磁場繞組 (A)以交流激磁 (B)以直流激磁 (C)以交流激磁,再改以直流激磁 (D)以直流激磁,再改以交流激磁。

解答B

()65. 有一臺三相、4極、36 槽同步發電機,其槽距為 (A)90 (B)60 (C)20 (D)10 度電機角。

解答C

解析 每極占 $\frac{36}{4}$ = 9 槽,每極電機角為 180°,槽距 = $\frac{180°}{9}$ = 20°

()66. 有一臺 12 極同步發電機,產生 60Hz 的交流電,其角速率 ω 為 (A)600 (B)628 (C)314 (D)62.8 rad/sec (弳度 / 秒)。

解答D

| 解析 | ω = $\frac{4\pi f}{P} = \frac{4\pi \times 60}{12} = 62.8 \text{rad/sec}$

()67. 三相同步發電機的電樞繞組,其感應電勢中各相的三次諧波,相位角相差幾度? (A)180 (B)120 (C)90 (D)0。

解答 D

()68. 一臺三相、4 極同步發電機,一個圓周的電機角共有幾度? (A)180 (B)360 (C)540 (D)720。

解答D

解析 $\theta_e = \frac{P}{2} \theta_m = \frac{4}{2} \times 360^\circ = 720^\circ$

()69. 一臺三相、12 極交流發電機,欲產生三相 60Hz、10kV 電源,轉速應控制在多少 rpm? (A)5 (B)20 (C)600 (D)720。

解答C

解析 $n_S = \frac{120f}{P} = \frac{120 \times 60}{12} = 600$ rpm

()70. 三相同步發電機,各相電源之相角差為 (A)60° (B)90° (C)120° (D)180°。

解答C

()71. 同步交流發電機之轉速愈快,則輸出電源頻率 (A)愈高 (B)愈低 (C)不一定 (D)不變。

解答A

解析 $n_S = \frac{120f}{P}$

()72. 有 24 磁極之交流發電機,若轉速為每分鐘 250 轉,則產生交流頻率為 (A)50 (B)60 (C)55 (D)70 Hz。

解答A

[解析] $f = \frac{P \cdot n_s}{120} = \frac{24 \times 250}{120} = 50$ Hz

()73. 有一同步發電機,若頻率為 60Hz,轉速為 30rps,則該機的極數為 (A)2 (B)4 (C)6 (D)8 極。

解答B

電工機械 0430b

解析 轉速 n=30 rps=30×60rpm,n=
$$\frac{120f}{P}$$
 \Rightarrow 30×60= $\frac{120 \times 60}{P}$ \Rightarrow 極數 P=4

()74. 設每極之總磁通量為φ韋伯,電勢頻率為fHz,則Ν匝線圈所產生之感應電勢應為幾V? (A)4Nfφ (B)2Nfφ (C)2.22Nfφ(D)4.44Nfφ。

解答D

()75. 一臺三相、12 極、Y 接同步發電機,其電樞繞組共有 210 匝,每一磁極磁通量為 0.009 韋伯,轉速為 600rpm,則該發電機每相之感 應電勢為 (A)168 (B)225 (C)336 (D)503 伏特。

解答

解析
$$n = \frac{120f}{P} \Rightarrow f = \frac{n \cdot P}{120} = \frac{600 \times 12}{120} = 60Hz$$
,每相匝數 $N = \frac{210}{3} = 70$ 匝

$$E_{\phi} = 4.44Nf \phi = 4.44 \times 70 \times 60 \times 0.009 = 168V$$

()76. 一臺三相、12 極、Y 接同步發電機,其電樞繞組共有 210 匝,每一磁極磁通量為 0.009 韋伯,轉速為 600rpm,該發電機的線電壓約 為 (A)390 (B)290 (C)580 (D)872。

解答B

解析
$$n = \frac{120f}{P}$$
 \Rightarrow $f = \frac{n \cdot P}{120} = \frac{600 \times 12}{120} = 60Hz$

每相匝數
$$N = \frac{210}{3} = 70$$
 匝

$$E_{\phi} = 4.44 \text{Nf} \phi = 4.44 \times 70 \times 60 \times 0.009 = 168 \text{V}$$

$$V_{\ell} = \sqrt{3}V_{\phi} = \sqrt{3} \times 168 = 290V$$

()77. 同步發電機的電樞繞組,一般採用 (A)單層、短節距、集中繞組 (B)單層、短節距、分布繞組 (C)雙層、全節距、集中繞組 (D) 雙層、短節距、分布繞組。

解答 I

()78. 有一交流發電機,電樞繞組使用 150 度電機角的短節距繞,其節距因數為 (A)0.966 (B)0.875 (C)0.707 (D)0.6。

解答A

解析
$$K_p = \sin \frac{\beta}{2} = \sin \frac{150^{\circ}}{2} = 0.966$$

()79. 欲消除第三次諧波電壓對電路之影響,在同步發電機中,其線圈繞組之節距可採用 (A) $\frac{3}{4}$ (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D)1 π 。

解答B

所以由
$$\sin \frac{3\beta}{2} = 0$$
 知 $\frac{3}{2}\beta = 180^{\circ}$,即節距 $\beta = \frac{2}{3} \times 180^{\circ} = 120^{\circ}$

()80. 有一交流發電機,電樞繞組採用 $\frac{8}{9}$ 節距,表示每一個線圈的跨距為 (A)180 (B)160 (C)150 (D)90 度電機角。

解答B

解析 跨距=
$$\frac{8}{9} \times 180^{\circ} = 160^{\circ}$$

()81. 三相交流發電機,其線圈若採用 $\frac{9}{10}$ 線圈節距時,則其節距因數應為 (A) $\sin 9$ ° (B) $\sin 18$ ° (C) $\cos 9$ ° (D) $\cos 18$ ° °

解答C

ch18 同步發電機原理 電工機械 0430b

解析
$$K_p = \sin \frac{\beta}{2} = \sin \frac{9}{10} \times 180^\circ$$
 $= \sin 81^\circ = \cos 9^\circ$